Journal of Organometallic Chemistry, 128 (1977) 361-366 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE GEMINAL TIN-PROTON COUPLING CONSTANT. INFLUENCE OF X IN R₃SnCH₂X AND R₃SnCH₂CH₂X, AND OF THE Sn-C-H ANGLE

BERTHA DE POORTER

Vrije Universiteit Brussel, Algemene en Organische Scheikunde (TW), Pleinlaan 2, B-1050 Brussel (Belgium)

(Received September 8th, 1976)

Summary

By use of examples taken from the literature, it is shown that the influence of an α -substituent on the geminal tin—proton coupling constant follows the expected trend, so that the theory developed by Pople for ${}^{2}J(HH)$ can also be used to explain the changes of ${}^{2}J(SnH)$.

Introduction

In the past fifteen years many publications have dealt with variations of the geminal tin-proton coupling constant with the nature or number of the substituents in series such as $Me_{4-n}SnX_n$ ([1] and refs. cited). In contrast, there has been no systematic study of how ${}^{2}J(SnH)$ is influenced by a change in the nature of the carbon atom between tin and the coupled hydrogen. Schmidbaur [2] observed an increase of ${}^{2}J(SnH)$ on replacing a proton by a trimethylsilylgroup in $(CH_3)_4$ Sn (Table 2) and explained this in terms of the rehybridization of the bridging carbon. Van der Kelen [3] compared ${}^{2}J(SnH)$ in (CH₂)₂SnX. $(CH_3CH_2)_3SnX$ and $(XCH_2)_3SnX$ with X = Br, Cl and found that ²J(SnH) decreased in the sequence $(CH_3)_3SnX > (CH_3CH_2)_3SnX > (XCH_2)_3SnX$. He suggested that the large decrease of ${}^{2}J(SnH)$ is caused principally by a decrease of the electron density around the hydrogen nucleus, rather than by an increase of the polarity of the Sn-C bond. For van der Kelen this could also explain why the coupling constant between tin and the methylene protons in R₃SnCH₂Ph is always larger than between tin and the methyl protons in R₃SnCH₃, since he postulates that the π -system of the phenyl ring is delocalized towards tin, causing the electron density round the methylene protons to increase. According to Mitchell [4] the large value of ${}^{2}J(SnH)$ in allyltin compounds and the lower value in compounds in which the α -carbon has as substituent an electronegative group, is probably caused by steric factors.

As can be seen in the Tables 1–4 the variation of ${}^{2}J(SnH)$ due to a change of

the nature of α -carbon is rather large, even in some cases causing a sign inversion. In the next section we try to explain these trends qualitatively by comparing ²J(SnH) with the geminal proton—proton coupling constant in analogous compounds.

Discussion

A. The geminal proton-proton coupling constant (Pople's model)

Any change in the nature of the carbon atom in a methylene group leads to a change in the geminal proton—proton coupling constant. These variations of $^{2}J(HH')$ have been explained qualitatively by Pople by means of a MO theory [5]. This author considers the CH₂ group as an isolated entity with $C_{2\nu}$ symmetry, and describes it in terms of 4 MO's, two of which are bonding:

$$\Psi_1 = c_{1h} \cdot h + c_{1h'} \cdot h' + c_{1\sigma} \cdot \sigma(C)$$

$$\Psi_2 = c_{2h} \cdot h - c_{2h'} \cdot h' + c_{2p} \cdot p_y(C)$$

where $h \equiv 1s(H)$, $h' \equiv 1s(H')$, $\sigma(C)$ is a combination of 2s(C) and $2p_z(C)$; by symmetry $c_{1h} = c_{1h'}$, $c_{2h} = c_{2h'}$. Similarly the two antibonding MO's can be written:

$$\Psi_3 = c_{3h} \cdot h + c_{3h'} \cdot h' - c_{3\sigma} \cdot \sigma(C)$$

$$\Psi_4 = c_{4h'} \cdot h - c_{4h'} \cdot h' - c_{4\sigma} \cdot p_{\mu}(C)$$

Of these four MO's, Ψ_1 and Ψ_3 are symmetrical relative to the symmetry plane, Ψ_2 and Ψ_4 are antisymmetrical. If, for instance, electrons are witdrawn from the symmetrical orbital Ψ_1 , c_{1h} and $c_{1h'}$ are reduced, causing the other symmetrical orbital Ψ_3 , to become more hydrogen-like, i.e. the magnitude of c_{3h} and $c_{3h'}$ increases. What has now to be assessed is the effect this has on

$${}^{2}J(\mathrm{HH}') = -\frac{1}{h} \left(\frac{16\pi\beta h}{3}\right)^{2} \gamma_{\mathrm{H}}^{2} |1s_{\mathrm{H}}(\mathbf{0})|^{4} \sum_{i}^{\mathrm{occ}} \sum_{j}^{\mathrm{unocc}} (\epsilon_{j} - \epsilon_{i})^{-1} c_{ih} c_{jh} c_{ih'} c_{jh'}$$

By considering the changes of the coefficients and by taking into account the relative energy differences of the four MO's, Pople [5] comes to the following conclusions:

(a) Increasing the s-character of the carbon orbitals causes a positive change in ${}^{2}J(HH')$.

(b) Withdrawal of electrons from the symmetrical orbital causes a positive shift in ${}^{2}J(HH')$.

(c) Withdrawal of electrons from the antisymmetrical orbital causes a negative shift in ${}^{2}J(HH')$.

As the withdrawal of electrons from the symmetrical orbital corresponds to the inductive effect of an α -substituent and withdrawal from the antisymmetrical orbital to the hyperconjugative effect of an α -substituent and the inductive effect of a β -substituent, Pople can explain qualitatively the generally observed trends, which are [5]:

(1) ${}^{2}J(HH')$ becomes more positive as the hybridization of carbon becomes more s-like.

(2) Attachment of an electronegative group X to the CH_2 group causes a positive shift of ${}^2J(HH')$.

(3) The presence of a π -electron system on the CH₂ group causes a negative shift of ²J(HH').

(4) Introduction of an electronegative group β to the CH₂ group causes a negative shift of ²J(HH').

B. The geminal tin-proton coupling constant

It is interesting to see whether this model can be used to the geminal tinproton coupling constant. We consider the SnCH₂ group as an isolated entity; if we do not take into account an eventual asymmetry of Sn or X, SnCH₂X belongs to the C_s point group, where the only element of symmetry is the plane bisecting the H-C-H' angle. We can thus construct the following bonding MO's:

$$\Psi_{a} = c_{ah} \cdot h + c_{ah'} \cdot h' + c_{a\sigma} \cdot \sigma(C) + c_{a\sigma'} \cdot \sigma'(Sn)$$

$$\Psi_{b} = c_{bh} \cdot h + c_{bh'} \cdot h' + c_{bp} \cdot p_{y}(C) - c_{b\sigma'} \cdot \sigma'(Sn)$$

$$\Psi_{c} = c_{ch} \cdot h - c_{ch'} \cdot h' + c_{cp} \cdot p_{z}(C)$$
where $\sigma'(Sn) = a \cdot 5s(Sn) + \sum_{i=x, y, z} b_{i} \cdot 5p_{i}(Sn)$, and $\sigma(C)$ is a combination of
 $2s(C)$ and $2n_{z}(C)$

2s(C) and $2p_x(C)$.

As the geminal tin-proton coupling constant can be formulated as following:

$${}^{2}J(\operatorname{SnH}) = {}^{2}J(\operatorname{SnH}') = \frac{-1}{h} \left(\frac{16\pi\beta h}{3}\right)^{2} \cdot \gamma_{\operatorname{Sn}}\gamma_{\operatorname{H}} |1s_{\operatorname{H}}(o)|^{2} |5s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{occ}} \sum_{j}^{\operatorname{unocc}} (\epsilon_{j} - \epsilon_{i})^{-1} c_{is(\operatorname{Sn}}c_{is(\operatorname{H})}c_{js(\operatorname{Sn}}c_{js(\operatorname{H})})^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{occ}} \sum_{j}^{\operatorname{unocc}} (\epsilon_{j} - \epsilon_{i})^{-1} c_{is(\operatorname{Sn})}c_{is(\operatorname{H})}^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{occ}} \sum_{j}^{\operatorname{unocc}} (\epsilon_{j} - \epsilon_{i})^{-1} c_{is(\operatorname{Sn})}c_{is(\operatorname{H})}^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{occ}} \sum_{j}^{\operatorname{unocc}} (\epsilon_{i} - \epsilon_{i})^{-1} c_{is(\operatorname{Sn})}c_{is(\operatorname{Sn})}^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{occ}} \sum_{j}^{\operatorname{unocc}} (\epsilon_{i} - \epsilon_{i})^{-1} c_{is(\operatorname{Sn})}^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{Sn}}(o)|^{2} \cdot \sum_{i}^{\operatorname{unocc}} (\epsilon_{i} - \epsilon_{i})^{-1} |1s_{\operatorname{H}}(o)|^{2} |1s_{\operatorname{H}}$$

and as $c_{cs(Sn)} = 0$, it is clear that the contribution of Ψ_c to ²J(SnH) is zero, and that only Ψ_a and Ψ_b have to be considered in the following discussion.

In Ψ_a the sign of the coefficients of 1s(H) and 5s(Sn) are the same *, just as in Ψ_1 the signs of 1s(H) and 1s(H') are equal; in contrast, in Ψ_b and Ψ_2 , the coefficients of the s-orbitals of the coupled nuclei have the opposite sign. Just as in Pople's system, we can consider the energy of Ψ_b , ϵ_b , to be higher than ϵ_a , as in Ψ_a the carbon atom uses partly its 2s orbital. The same concordance exists between the antibonding MO's. This means that our system is qualitatively similar to Pople's; we can thus adopt his conclusions. However, one difference must be kept in mind, namely that γ_{Sn} is negative and γ_H positive, which causes the algebraic sense of a change of ²J(SnH) to be opposite to this of ²J(HH'). We can thus expect the following trends:

(1) ${}^{2}J(SnH)$ becomes more negative as the hybridization from carbon changes from sp^{3} to sp^{2} ;

(2) an electronegative group on CH_2 leads to a negative shift of ${}^2J(SnH)$;

(3) a π -electron system on CH₂ leads to a positive shift of ²J(SnH);

(4) an electronegative group in the β position makes ²J(SnH) more positive. Let us now consider the experimental data:

1. Change of the carbon hybridization or of the Sn-C-H angle There are few data for comparison available, because the sign of ²J(SnH) is

Compound	² J(¹¹⁹ SnH) (Hz)	Reference	
H ₂ C=C ^{/H} SnVin ₃	99.06	ő	
H Sncy-Pr ₃	-26.92	7	
H SnMe ₃	21.0 ^{<i>a</i>}	8	
H ₂ C	+54.3	9, 10	

INFLUENCE OF THE Sn-C-H ANGLE ON ²J(SnH)

often not determined and as with cyclic systems, this coupling constant is sometimes not measured at all because of the complexity of the spectra. In Table 1 we list some typical examples of organotin compounds for which we can more or less estimate the Sn-C-H angle.

TABLE 2

² J(SnH)[CHXY	IN M	e ₃ SnCHXY	FOR	VARIOUS	ХА	ND	Y
--------------------------	------	-----------------------	-----	---------	----	----	---

x	Y	² J(¹¹⁹ SnH)[CHXY] ^a (Hz)	Reference	
н	н	54.3	9	
н	СН3	51.4	11	
н	CH ₂ Ph	49.5 ^b	12	
н	CI	19.4 ^b	13	
н	Br	18.0 ^b	13	
CI	CI	15.0 ^b	13	
Br	Br	13.2 ^b	13	
н	SiMe ₃	72.2	2	
н	SnMe ₃	60.3	14	
H	OCH3	16.2 ^b	15	
	N O			
H		28.8 ^b	15	

^a Except for Me₄Sn, the sign of this coupling constant has not been determined, but it is assumed to be positive in all cases.^b Average value of ${}^{2}J(117SnH)$ and ${}^{2}J(119SnH)$.

. . • •

* The same reasoning is valid for H', as H and H' are considered to be equivalent.

TABLE 1

TABLE 3

TABLE 4

v	v	2/(119spH)(CHXX)	Reference		
Λ	•	(Hz)	Reference		
н	н	54.3	9		
н	Ph	62.7	16		
н	2-Pyridyl	62	17		
н	Benzoyl	66	18		
Ph	Ph	74.4	12		

INFLUENCE OF A π -ELECTRON SYSTEM ON ²J(SnH)[CHXY] IN Me₃SnCHXY

We see that in going from tetramethyltin (angle $\sim 109^{\circ}$) to tetravinyltin (angle $\sim 120^{\circ}$) there is a large negative shift of ²J(SnH). The fact that the other substituents on tin do not remain the same cannot account for this dramatic fall in this coupling constant (see e.g. [1]), and so we can conclude that the expected trend is observed.

2. Inductive effect of an α -substituent

The data in Table 2 allow us to examine the influence of some substituents on the α -carbon. We can distinguish three classes of compounds in this series: (i) the substituents X, Y are less electronegative than C and H, e.g. Sn and Si: in these compounds ${}^{2}J(SnH) > 60$ Hz; (ii) the substituents are C or H: ${}^{2}J(SnH) \sim$ 50 Hz; (iii) the substituents are more electronegative, e.g. Cl, Br, O, N: ${}^{2}J(SnH)$ is about 20–30 Hz.

Pople [5] pointed out that although an electronegative substituent leads to a positive change of ${}^{2}J(HH')$, this change is not a simple function of electronegativity. This seems to be true also in the case of ${}^{2}J(SnH)$. It can thus be concluded that once again ${}^{2}J(SnH)$ and ${}^{2}J(HH')$ behave similarly.

3. Effect of a π -electron system on carbon

It can be seen that in all the cases covered in Table 3, a π -system leads indeed to a positive shift of ${}^{2}J(SnH)$.

In the introduction we mentioned the explanation given by Van der Kelen [3] for the positive shift observed when the substituent is a phenyl group. For

² J(SnH) IN Ph ₃ SnCH ₂ CH ₂ Z [19]			
2	² J(¹¹⁹ SnH) (H2)		
CN	51.5		
Ph	55.5		
$C(OCH_3)=0$	56 a		
OPh	63.5		
0C(CH ₁)=0	56		
н	56.5 ^b		

⁶ Average value of ²J(¹¹⁷SnH) and ²J(¹¹⁹SnH). ^b In ref. 19 the values for ²J(SnH) and ³J(SnH) in this compound were interchanged.

his explanation to be true, it has to be accepted that the π -electrons are delocalized towards tin. As it is now established [20] that the opposite takes place in benzyltin compounds, our explanation, based on Pople's arguments, seems more logical.

4. A β -substituent

The only relevant data we could find in the literature are those for the series $Ph_3SnCH_2CH_2Z$ [19] (Table 4). This is the only case in which the expected trend is not observed. However, following Pople's theory, the influence of a β substituent depends largely on the dominant conformation. If a β substituent has the same effect on $^2J(HH')$ and $^2J(SnH)$, this would indicate that the gauche conformer is rather stable in $Ph_3SnCH_2CH_2Z$.

Conclusion

Either an electronegative group, a π -electron system bonded to the α carbon atom, or a change of the hybridization of this atom lead to a qualitatively similar change of ²J(HH') in the CH₂ and ²J(SnH) in the SnCH entity. In contrast, a β substituent does not have the expected influence on ²J(SnH), and conformational factors may be important in this case. The results indicate that the theory devised by Pople for ²J(HH') can also be used to explain the large changes of ²J(SnH) which occur when the nature of the carbon atom between tin and the coupled hydrogen is changed.

References

- 1 B. de Poorter and M. Gielen, J. Organometal. Chem., 124 (1977) 161.
- 2 H. Schmidbaur, Chem. Ber., 97 (1964) 271.
- 3 L. Verdonck, G.P. Van der Kelen and Z. Eeckhaut, J. Organometal. Chem., 11 (1968) 487.
- 4 T.N. Mitchell, Org. Magn. Res., 7 (1975) 59.
- 5 J.A. Pople and A.A. Bothner-By, J. Chem. Phys., 42 (1965) 1339.
- 6 P. Krebs and H. Dreeskamp, Spectrochimica Acta A, 25 (1969) 1399.
- 7 P.A. Scherr and J.P. Oliver, J. Amer. Chem. Soc., 94 (1972) 8026.
- 8 C.H.W. Jones, R.G. Jones, P. Partington and R.M.G. Roberts, J. Organometal. Chem., 32 (1971) 201.
- 9 G.P. Van der Kelen, Nature, 193 (1962) 1069.
- 10 H. Dreeskamp and G. Stegmeier, Z. Naturforsch, Teil A, 22 (1967) 1458.
- 11 G. Barbieri and F. Taddei, J. Chem. Soc. Perkin II, (1972) 1327.
- 12 Unpublished results of our laboratory.
- 13 A.G. Davies and T.N. Mitchell, J. Chem. Soc. C, (1969) 1896.
- 14 H.D. Kaesz, J. Amer. Chem. Soc., 83 (1961) 1514.
- 15 P.G. Kostianovskii and A.K. Prokofiev, Dokl. Akad. Nauk SSSR, 164 (1965) 1054.
- 16 K. Sisido, T. Miyanisi, K. Nabika and S. Kozima, J. Organometal. Chem., 11 (1968) 281.
- 17 W.K. Musker and R.L. Scholl, J. Organometal. Chem., 27 (1971) 37.
- 18 I.F. Lutsenko, Yu.I. Baukov, I.Yu. Belavin, J. Organometal. Chem., 24 (1970) 359.
- 19 L. Verdonck and G.P. Van der Kelen, J. Organometal. Chem., 11 (1968) 491.
- 20 C.G. Pitt, J. Organometal. Chem., 61 (1973) C35.